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/ A
introduction

The fo rm of the hulls of many un t h r~ cr~ 1 t ~ ; d l y 1

closed su r face  of revolut ion.  This p r o p e r t y ,  ~~ e t h . 1r ~ i t h t he n u~.c r i c a l

solutions available fo r  elastic shel ls  of r e v e lu t  i on . h i s  ~~ - i i  .~~t td t i

s tud y of these f i gures in connect ion  w i t h  t h e  a o u s t  ic  r ad i .~t i~~: r r ~ h i e r .

See [ 1 -3] ~~. Solutions have been g iven ~~~~ch I f l . i i~~c ~-~ir ioI1s  ~~~~ i f ~~in~;

assumptions regarding the nature of the radiated acoustic field . [‘
~
-
~~

] .

Ref. [4] conta ins  a summary of some of the  r c c e i it  soch in tlii~

In the following, the scaled a’ oustic field equations are cx~ r€s sL d

in circular cy lindrical coordinates and the c i r :u m f c r e a t i a l  c oo r d u i a t 1 ss; -

pressed thro ugh a Fourier  series e~cpansion . The reg ion  e x t e r n a l  ~o sh~~1 l~ s

generating a curve is mapped conformally onto t he  region e x t e r n a l  t .” th

unit circle. This is tantemount to the construction of an orthogonal

coordina te system which has the shell’s generating curve as one of i ts  c~~~’r-

dir.ate lines. The numerical conformal napping techni que utilized is a o p l i c ab l c

to i n f i n i t e  reg ions  bounded i n t e r n a l l y .  The rep  i~~n ex t e r n a l  t v  t h e  u n i t

c i r cle  is mapped i n to  the  reg ion i n t e r n a l  t o  a r~’c t ’~n p l c .  The eq~ia t ~~vn  if

motion of the  acous t i c  f lu i d  t o g e t h e r  w~ ~h t h e  1 H id  f ( o r1.~~~ r\  ~~~~

in the t r a n s f o r m ed coord i : c-t t e  s y s t  i s  > 1c  n~ d in i t .  d i  t or o .

The n o r m a l  s hel l  disp l a cem en t  is i n t r e d t i t t d  t ’ i r u i h  a t i  1 ;~~ ~ ci —

at ion , as a so r i & s of  I to ’ i n  Va COO s i t ’ ’  I I of . I n t v r .1 1 cc r i n in  1.’
LU

terms of the  e x p a n s i o n  w h i c h  c o n t a i n  t h e  n k n ~~w o ; . ~~r t  ace  ac a ‘ i C  ~~ a

c..I ~~ — — -_ _- - - ____ - - —  -~~~~~- - — - - ~~~~~- -~~-
~_ c .

This  work s u p p o r t e d  by t h e  OH i c c  of ‘ iv : t l P e c n c h  u n h  O u t  .

..w - .. —

~ 
Professor , ~n p t  . ~i~ c h a n i a I  n~’t ne , - r  l i p ,  ( ‘~~ ‘ d .  . .- l
Numb ers in bra  k et s  des I m i t e  references at. t h i  e n i  c i  t lie p. ,~m r  
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~\ rc :.crical solution for the 
t r a n s i e n t  vibratinn of an arbi tr~ r ’,~

~~c1l o.~ r~~;’1 n t i o n , r ’~r r c u r ~ft d b” an ~~~~~ medium , has been f~ ~
- ‘d~ ted

in term~ t i  t h e  conformally mapped acoustic 1c~u~~L~~ ’ns , f l u id .~~~~ 1

c~ :idit~ on and spectral repttn -~cri r a iOn o~ the s~ c ii di ~p ia ~~. ~

t e chn iqu e  r v n d i  ly includes the b o u n d a r y  condit i n  a t  i n !  inity , m t  ~ r n a i

shell  st r u c t u r e  and is exact to within those ap~~r c n  [n ~~~t I ~ris i n ;  t i c  t In

the f i n i t e  d i f f e r e n c e  method .
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where T = ct/a , P P/Pf
C and P

f 
= fluid density. In (9), the angular

coordina te , x2, may be suppressed through a Fourier expansion of P

P ( x
1,
x2,x3, T) = ) (P cos nx

2 
+ P SIn nx

2
) (10)

n 0

For notati aji nimplicity , P will be taken , in t he  f ollo wing ,  to re?resent

either P or I . For the exterior problem x > 1. However , fo r  a closednc ns 1 —

shell of revo1ut~~on there exist points on the shell
’s surface for which

0. Tho corresponding singularitics in (9) may be eiIuinate d through

the ch ang~’ o~ d L p e n d e ~1t var iable

P = F / X
1~ 

(l ,x
3

) (11)

The reg ion external to the unit circle x
1 

= 1 may be mapped -~r~to the t~~ri~ r

of a rect an~~l c through the inversion

y = l/x
1 

( 12)

See [1,2,3]. Substituting (10) , (11) and (12) into (9) and taki ng the

Laplace transform with respect to T, assuming zero initial conditions gives

----r n + a i -
~P + a a + a~~~~~-~~+ a ~~ F 0  (13)

where a~ = 1/v — (~)X
1/~ix

1
) / ( y 2 X 1) ,  a~ = (~ X 1f Bx 3 ) f ( X 1

y2 ) — 4(~ X
1
(l ,x3) / ~ x3)/

(y 2 X 1(l , x 3
) ) ;  ~~~~ = l/y 2, a~ = (6 (~ X1(l ,x

3
) / ~ x3)

2/X 1
(l ,x3) 

— 2(~~’ X 1
(l ,x 3)/ ~~ x~

’ ))

- 2 (~ X1/ax 3) (~ X1(l ,x3)/3x3) / ( y 2X
1
X
1

(l ,x
3
)~ 

- (g 11/ y 4
) ( s 2 1a + )

and s is ‘ l i t  Ln~~1ace t r ans fo rm va r i ab le .

An i i  l i o t i v e  method f o r  c o m p u t a t i o n  of the  t o o l  1 i c n n t ~. a t o  c i i r ~~in g  i n

t .1a~~j ’ i n~ t nn c t ion (3) Is g iv en  in  [10] . T h i s  t e c h n i que has  been app l i e d  to

the solution (1 the cylindrical prohftm in [7].

Eq. (13 )  may be expressed In finite dli lerence form Iv rep l a -  i ng the

op .ilial i c  ~at  j : t.  wj  ~~ t he  l e l  1o~ in ~ d i i  f o t  , n o e  ox  ~~rt  . 0

—- -~ ~~~~~ ---—-~~ ~~~~~
-

~~
—- -— —-

~~~~~~~~~~
- 
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n 1 ,3, C1 
= 1/8, C

2 
= (a 2-1)/8 , C

3 
-u2/~~, ~

h x
2 

— x 1 and ~h = x3 
— 

~2
• For points not a dj a o ~’nt to y = 0, 

~
‘ = 1,

x3 
= ± n / 2  the  second der ivat ive  ~ an approxinated by 

~ ‘~~~k x

n=0,4 where the mesh points ar e the set {x , x 1, x 2 , x 3, x 4 }, A ’ L x , m=0,4,

in n , B (A ’2 — D ) / 2 , C = 
~~~

X
n

_ X
m

)
~ 

= 0 , 4 , in n , D x x , in =

in ~ ri, and A ( x
2

) 12 x~ — 6A’ x.~ + 28 )/C . For points adjat -cnt to ‘i =

y = 1, x3 
±n/2 the second derivative was approximated by F,~~~~~~~ = B (x

1
)F

n = 0,3 where A E x , in = 0,3, m n , C ~(x -x), in = 0,3, in

B (x ) = (6x — 2A )/C and the mesh points consist of the set {x ,x.,,x,,,x. }.
n 1 1 ~ 

0 i 3

At a general nodal point y = y ., x 3 ~3k the finite differer ce form of (13)

is then

r~ —2 

(D i + k  F .4 k + D
~~k+r Fi k+r) = 0

where the coefficients of F in (14) are f o u n d  by s u b st i t u t i n g  the  ab ove

difference expressions into (13) and the subscript n has beer omitted i n t h e

symbol F for the sake of clarity .

~~~~~~y~ çonditions

At the shell f l u i d  in te r face, the  norma l f l u i d  velocity  mus t  equa l  t l I L

normal shell ve loc i ty .  This impli es tha t

a(~ P /a  + ~P 1
f ,~ ti) = —~~ i~~/~ T

2 ( 1

where P , P and W are the coefficients of the  F o u r i e r  expans ion s , in
fl n

terms of x2 , of the  scaled r e f l e c t e d  and r a d i a t e d  ac ou s t i c  p r e o s ur o . t !

-i~~ n In c i d e n t  a rou s t ic  pressure  and t b  s ca l ed  s ~r:- ’,- ! 1 shell di sp~ a~n r - t

respectively . n Is an ex te r ior  u n i t  v e c t o r  w! ui . !1 I ’ n o r ~” ’ l  t ’  t i n  oh H ’ s

s’i r f n c e  i n  t h e  tinscoil ed ph y s i c i ~ coa r l i n a t ~~s x . . It nr, 1 s 1 ’.~ :i . ~~~~~~~~ ‘‘ . a~
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a P k 31’ .—a- n — (16)an  a ç~

where are tin: contravarient components of the u n i t  vector n in the

coordinate system. The tensor transformation law implies that

k 
= ~ix~ —i ( 17)

Since ii is normal  to a su r f ace  of r evo lu t ion  and x
1 

is cylindrical

It follow s t h a t  ~ 2 
= 0. This and the fact that x

1 
and are only func tions

of x
1 
and , together with (17), imp lies tha t n~ = 0. For covarierit com-

ponent s  (L’) bL~~~mes

n = —~-~~-~- (18)
k

For or th og~~ aI coordinates ri 1 = 0 implies that n~ 0 and therefore  n
2 

= 0.

Summing (18 for k = 3 gives n
3 

= (~ x
1
/~ x

3
)n

1 
+ (3~ 3/ 3x 3

)~~3 . However

= ~ f / 7f ~ = ( (~f/a~1)~1 + ( a f / a ~3)~ 3) / vf  = 
~~
‘
~~~l 

+ n
3
g
3 

and n =

—3 — .~i _ij _ij . 11 _33 — —
n n 3 since  n = g n 3 ,  g = 0 , 1 ~ j ,  ~ = 1. Here f ( x 1,x 3

) c

is the equation c f  the generating curve . Then n
3 

= ((~~~1/3x 3
) ( ) f / ~~~1

) +

(a~ 3
/ax

3
)(7f/:’~ 3

))4~ fj= (3 f / 3 x 3 )A ~f I= 0 sInce f(1,x3
) = c is the equation

of the g e n o r . i t  ing curve in the x . coordinate system . Then n
3 

= 0 and therefore

= 0. Sin e n i s  a unit vector It fol1u~ s f r o m  the d e f i n i t i o n  of the

scalar p r d :~ t ari d the definiti on of the non—dimensional coord inati~ X . that

1 k  2 2 3 1 7n n = l /~ . Since  ri 0 and ii = 0, i t  foilo ~;n that (n ) = 1 or

= 1/ (;‘~~~~
- Subs t i tut ing In to  (16) gives

1 ~p
- (1~~~)

n a 0 11 .x
1

The h ’’,n i r v  condItion (15)  Is then



~ -

X1
2 (11 x3

) 
.!i~ + a }!11L = — (20)

where y = l/x
1 
and P is replaced by F through (11). The finite difference

form of (20) is obtained by replacing 3F~/3y with the first difference

approximation.

In the rectangle 0 < y < 1, —n/2 < x
3 

< n/2 , (18) must be satisfied

for y = 1. The boundary at infinity corresponds to y 0 on which F~ (O~x3) = 0.

Assuming that X1(1,
± it/2) = 0, then since P (y, ± vr/2) is bounded , it follows

from (11) that F (y, ± t/2) 0. Given the normal shell displacements , W ,

and the incident acoustic pressure , P 1, the boundary conditions together with

(10), (11) and (13) determine the reflected and radiated acoustic pressure

over the region external to the cavity defined by the surface of revo1~ tion .

Shell Equations

Solutions of the shell’s equations of motion may be introduced into the

shell fluid interaction problem eithe r directly through finite difference

approximation as in [2 ,3) or through a spectral representation as in [6].

Since there exists at present a more comprehensive library of shell programs

which employ spectral representation rather than integration of a finite

different approximation , the following development is based on spectrai re~’re—

sentation . For notationa l simplicity U2, U~ , and W will note the coef ficients

corresponding to some given value of the summation index for the Fc~ rier

expansions, with respect to the polar angle x2, of the tangenti al , axial , a i d

normal shell disp lacements respectively . Then in terms of g e n e r a i i o e d  c or d n ~a t t

q (T) and scaled normal modes U , P an d Wn 2m 3m

W = q (T) W (71)



where

+ c~ q = 
~ 

Gm
(T) (22)

See [11). c (T) is given by

c (T) = _ 2~ Pf
c2a3 I P~W X

1 
dX

3
/N (23)

where

N 2irp h a~ I (u~ + U~ + W
2)X 1 dX3 (24)

= she l l  d e n si t y ,  h = shell thickness , 
~T 

p + P1 + where P is any

pressure ac t i n g  on the  shell  which is not applied through the fluid . For

a given shell geometry the in vacuo scaled normal modes and scaled natural

f r equenc i e s  
~m 

= a~~ /c nay be fo und by a var iety of means , [11], and are

therefore  assumed to be known . The Integral  of the unknown sur face  acous tic

pr essure , F , in (23) may be approximated by

I P W X
1 

dX
3 L H

k 
P(k) 1

~m~~~ 
x1(k) (25)

It.

where P(k) = 1’i k  
i corresponds to the row of nodes for which y 1,

k corresp onds to the column number of nodes in the y ,  x 3 
plane and Hk are the

corresponding weights in any suitable numerical quadrature formula. Taking

the Laplace transform of (22), assuming zero init ial conditions , gives

q (s) = a2G ( s ) / ( c2 (s 2 + c12 ) )  (26)
in in

Equations (
~~~ i ,(11), (14), (21), (25), (26 )  and boundary condi tions are

stif f ici ~~.r t i  d e t e r m i n e  the transform of the acoustic pressure 1’~ over the

reg ion ( xt. ‘rnui l to t h e  ~lii’1 1. and  on the shell fluid interface together with

the transforu of t h e normal shell deflection . Solutions in the time domain

n’e found ‘ ough nume rical inversion of t h e  Laplace trans~ orni. ~ t ’c [12] and
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t 3).

Nunerical Studies

In order to demonstrate the computat ional  ~t i li t y  of the foregoing .

numerical studies were carried out utilizing a shell of revolution , th e

uppe r right hand quadrant of which is shown in Fi g. 2. The scaled d imen s ions

of the shell are indicated on the li gure together w ith crosses d~: Ling

the approxin~ation realized by retaining five terms in the mapping function

given by (3). The mid—section of the shell , —1 < X
3 

c + 1, is assumed to

be an elastic cylindrical shell with an unscaled radius of 53.34 cm. (21 in),

thickness of 2.54 cm (1 in), density of 7.829 i03 kg/rn3 ( C . 7 3 8  • 10 lb

sec2/in~) with a length of 106.68 cm (42 in) for which E 2.0684 . Pa

(30 106 psi) and v 0.3. The cylindrical midsection is assumed to iie

pinned at the ends = ± 1~ = ± 53.34 cm (± 21 in). The end sCctions

of the shell, > 1, are taken to be fixed rigid hemispherica l caps. The

shell is surrounded by an acoustic fluid for which c 1.4478 . 10~~ r’/s

(0.575 . I0~ in/sec) with a density of P f = 0.999 . 1O~ kg/rn
3 (0.935 .

lblsec
2 / in 4) .  A suddenly applied scaled force , P = cos (rX 3/2), acts on

the interior of the cylindrical midsection of the shell . Figure 3 shows the

scaled norna l displacement , as a function of scaled time , at the poin t = 0

for the rhell surrounded by an acoustic medium and in vacuo. Figurc s 6 ae

give results similar to those given in Figure 3 with 0.367 c and 0.73.~ l

respective ly. Due to the symmetry of the loading , only normal n;ode~ t~

are even functions of and the corresponding U3 
occur in (21) ~nd ( ? . ) .

Of these , it was found necessary to sum only the firs t two in (21) an 1 (2~~~.

The f i n i t e  d i fie rence  grid ove r the firs t quadrant of the mapp ed a c ou s~ i c

field consisted of 15 equally spaced rows - m d  8 u n e q u a l l y space~h celumno

of nodal poin ts. The modal column spacIn~: lii the mapped acrirstic- I i& - i ~~ i~

-~~~ 
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such that  the ( r:e,ponding spacing in the physical plane Is uniform .

The resulting sy s t e m  of equations was solved in double precision for the

t r a n s f o r m s  of r ;~~ shel l  d i sp lacements . N u m e r i c a l  invers ions  were car~ led

out usi ng [12~~.

Conclusions

A nu~~ rical solution for the transient vibration of an arb itrary shell

of revolut~~ n , su rrounded by an acoustic medium , has been formulated in

term s of the  con f ormall y mapped acous t ic eq ua tions , fluid shell boundary

condition nud sç-ectral representation of the normal shell dirp laceiaent.

Numerical uapping techniques have been shown to be effective in this appli-

cation. The t : ~e readily includes the boundary condition at infinity

and is ex c  it those approximations implicit in the finite difference

method. 1 ired in vacuo norma l modes and natural frequencies may

be computed utilizing anyone of the many dynami c shell an alys is cod es now

avaIlable. Th u s  shell fluid interaction problems for shells with complex

internal stru ture may be treated.

The present formulation , in terms of the Laplace transform , cou ld be

readily modified so that the time variab le is suppressed through a finite

difference tochiique . Steady state solutions may also be derived through a

modification of the boundary condition at infinity.

A ie4~ernynts

The r ) : :~p u t e r  programming and nume rical computations required for the

l op::- ~~~ of the conlorma 1 mapping program were ‘~cry capabl y perf ormed

by Mr. Milton Palmer. All computations were carried out at the buiversity of

Maryland Cou~ uter Science Center.
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